
J. Fluid Mech. (1975), vol. 70, part 1, pp .  59-79 

Printed in Great Britain. 
59 

A theoretical and experimental 
study of the velocity distribution and transition to 

turbulence in free oscillatory flow 

By CLAIRE CLARION A N D  ROBERT PELISSIER 
Institut de MBcanique des Fluides de l’Universit6 d’Aix Marseille 

(Received 20 December 1973 and in revised form 16 December 1974) 

The free oscillatory flow of a viscous fluid in a U-shaped tube is considered. A 
theoretical analysis (in which an axial flow is assumed and the start-up of the 
column is taken into account) shows, depending on the value of the similarity 
parameter y, various regimes of the flow. Measurements of the velocity distri- 
bution are made using hot-film velocity probes, operated with a constant- 
temperature anemometer, and visualizations of the flow are performed. Experi- 
mental results are in good agreement with theoretical ones when the flow is 
laminar, and show the possible existence of turbulent flows. Critical values, a t  
which the flow is disturbed over a more or less extended range of the successive 
oscillations, are determined for the similarity parameters y and h,/R. 

1. Introduction 
Free oscillatory viscous flow (a good illustration of which is the motion in a 

U-shaped tube of a liquid column, after an impulsive start from rest a t  an initial 
displacement) corresponds to a particular class of unsteady viscous flows. 
Analysis of the latter is very complex, since the setting in motion of the fluid 
column and the damping of oscillations, with other factors, must be taken into 
account. This problem was studied by, among other authors, J. Valensi and 
C .  Clarion at  the Institut de Mhcanique des Fluides de Marseille, after Valensi 
(1947a-c) had established that the similarity parameter y = R2u,/v. (v is the 
coefficient of kinematic viscosity, w, = (2gll)h the undamped angular frequency of 
the motion, 1 and R the length and the radius of the fluid column, respectively.) 
This theoretical and experimental investigation showed that the flow could be 
either completely developed laminar flow (whatever the amplitude of oscilla- 
tion), or a laminar boundary-layer flow for infinitely small amplitude, that 
would become, with sufficiently high values of the similarity parameter and 
amplitude of oscillation, first turbulent boundary-layer motion, then completely 
developed turbulent motion. The present work is an outgrowth of this analysis. 

2. Theoretical analysis 
Let us examine the laminar motion in a U-shaped tube (whose rectilinear 

vertical sides have a circular cross-section with a radius R) of a fluid column 
with a length I ,  displaced by a height h, from its position of equilibrium, then 
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abruptly started from rest. In  order to simplify the matter, we shall not take 
into account the secondary phenomena occurring in the bends; and we shall 
limit our analysis to one side (e.g. the left), whose length is assumed to be infinite. 
We shall also assume that the first half-oscillation is always upward. 

2.1. Basic equations 

Let us use cylindrical co-ordinates r ,  0, z (with x along the axis of the tube, 
positive upward), and let the origin of the co-ordinates be in the equilibrium 
plane of the fluid column. We shall assume that the flow is axially symmetric. 
The non-dimensional Navier-Stokes equations and the non-dimensional equation 
of continuity contain two similarity parameters y and ho/R. These nonlinear 
equations are difficult to solve. In  particular, the boundary conditions on the free 
surface cannot bewrittendown, since the actual shape of this surface is not known. 

It is possible, however, to make a number of reasonable approximations that 
will simplify the analysis. A justification for these hypotheses is given by the 
following result of experimental investigation. We noted that, for a given experi- 
ment, the instantaneous axial velocity profiles are similar along the fluid column 
away from the small region affected by the ends, and that, on the other hand, the 
free surface keeps an unchanging and roughly plane shape as time progresses. 
We are thus led to the following scheme. (i) Near the free surface (by assumption 
plane), there is a thin fluid layer, similar to a boundary layer in which the radial 
velocity component cannot be neglected. (ii) Away from this region, the flow is 
axial. Under these assumptions, the non-dimensional governing equations have 
the form 

Here t denotes time, W the component of the fluid velocity in the axial direction, 
p the pressure, p the density and g the acceleration due to gravity. 

We have to supplement (I)-( 3) with proper boundary and initial conditions. 
These are 

(i) W' = 0, 

t' > 0, r' = 1, (iii) W' = 0, (iv) free surface replaced by plane z = h, ] (4) 
t' < 0, 0 < r' < 1, (ii) h' = -ho, 

where 

after the release of the fluid column h = 0 a t  t = to. 
Let the pressure gradient be represented by the series 

B ,  and wnluP are complex functions of the sole parameter y.  The general solu- 
tion of (1)-(3), satisfying the boundary condition (iii), is the well-known relation 
between unsteady velocity profile and pressure gradient determined by Sex1 
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FIGURE 1. Graph of function I(z). zk roots of J&) = 0. 

(1930), then by Womersley (1955) andUchida (1956) in the case of pulsating flow. 
Consequently we have 

J ,  is the Bessel function of first kind and zero order. By integrating the pres- 
sure gradient all round the U-tube, and taking (5) into consideration, it is easy 
to obtain 

Identifying (6) and (8), we find that wn/wp is a solution of 

J1 is the Bessel function of first kind and first order. 

2.2. Discussion of (9) 

We notice that the roots of (9) can be only imaginary or complex. Let us first 
examine the imaginary roots. Set 

hn/wp is the damping factor of the corresponding partial. Then (9) is reduced to 

(hn/wp)2 = I(x), 5 = [yhn/wpI'* (10) 
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, values given by approximate expression (1 1). 
FIGURE 2.  as a function of y. -, computed values; 

It is clear, from the graph of the function I(x) in figure 1) that, to each positive 
value of I(x), correspond an infinity of values of x (denoted by x1,x2, ..., xm), 
t,hen an infinity of couples (h,/o,, r)) given by (10). x1 E [ O ,  xf[ and 

xnL E [Xnv Xrn+l[, 

where X ,  are the roots of I(x) = 0, and xk the roots of JJx)  = 0. 
Let us examine the functions y(A,/w,, 2). The derivative dy/d(h,/w,) is equal 

to zero for x = x* (0  6 x* < x!). It is positive for 0 6 x < x*, negative for 
x > x*. Then, for x 2 xy (i.e. n 2 2 ) ,  y decreases with increasing h,fw,; but, 
for x < x! (i.e. for n = I), y first increases, then decreases with increasing h,/w,. 

The graphs of h,/w, as a function of y are given in figure 2 ,  for n = 1 , 2 , 3 , 4 .  
(y* N 3.436 is the corresponding value of 2 = x*.) For 0 < y 6 y*, to n = 1 
correspond two roots h;/w, and Xilo,; and, to  each value of n 2 2, corresponds 
a root h,/w,. For y > y*, for n = 1 we have no root; but to each n 2 corres- 
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FIGURE 3. Logarithmic representation of n / w ,  and h,/o, as a function of 7. 

ponds a root h,/w,, as for 0 < y < y*. From the asymptotic expansions of Bessel 
functions, we may obtain the approximate expression for n > 2 

(11) h,/w, = (n7r - *7r,2/y. 

I n  figure 2,  the values of h,/wp given by (1 1)  are quite in agreement with those 
given by the computation of the roots. Let us now examine the complex roots 

Setting wn/wp = Qn/w, + ih,/w, and [ - iyw,/w,]* = p exp (ie), (9) is reduced to 
of (9). 

If, for a given value of p, B is a root of this equation, 7r + 0 , ~  - B and - 0 are also 
roots. To these four values of 0 correspond two roots of (9) 

f Q/w, + ih,/w,. 

T = 2n/Q is the pseudo period of the flow. It is easy to show that these roots 
exist only for y > y", and that they are unique. Then, for y < y*, the flow is 
aperiodic; for y > y*, it is oscillatory. The logarithmic representation of Q/w, 
and hn/w, as a function of y is plotted in figure 3. There is good agreement be- 
tween the values of hJw, and the corresponding ones given by the empirical 
expressions determined from experiments (Clarion 1955) 

A&, = 2-5y-09, 3.46 < y < 2 5 ;  A&, = ~ - * Y - O . ~ ,  y > 46. 
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2.3. Velocity and damping factor 

It follows from the discussion of (9), and from (7 ) )  that the general solution of 
(1)-(3), satisfying the initial and boundary conditions (4), is 

A, k ,  Dn are coefficients, functions of the sole parameter y ,  determined by the 
initial conditions 

- [(h1/w,)2 + (Q'u,)~- xgy-lhl/wp] cos Qt - y - l ( ~ : ) ~  sin QtQ/w, 
- 

a 0 m  

[(hl/w,)2 + (R/w,)2 - (&)2 y-lh,/w,] sin Qt + y-l ( x % ) ~  cos QtQ/w, 
alm = , 

[A,/o, - (.k,2 y-Y2 + (Q/wJ2 
9 

[h,/w, - ( x 3 y - l l 2  + (Q/w,)2 

valid for y > y* (i.e. when the flow is oscillatory); and 

valid for y < y* (j.e. when the flow is aperiodic). As regards oscillatory flows, 
the damping value between the pth and the (p + 1)th oscillation is given by 
the relation h(2p-l)rr/h(2p+l)n, where 

When the aperiodic partial terms are not taken into account, one can easily check: 

h~2p-1)n/h(2p+l)n = exp (27ThllQ). 
Solutions (12)-(14) are very complex, and can be exploited only by numerical 
analysis. 

3. Presentation and discussion of numerical results 

3.1 Velocity proj le  

Calculations o f  W/(w,h,), given by solutions (12) and (13), and of h/ho, given 
by solution (14)) have been made for twenty values of y (1  < y < 400), ten values 
of wPt (0  Q w,t < 30) in the aperiodic flow, and fifteen values of Qt (0 < Rt < 37r) 
in the oscillatory flows. The value of Ar/R was chosen to be 0.025. From these 
results we obtain, for a given value of y ,  the evolution at  increasing times of the 
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instantaneous velocity profiles. A number of examples corresponding to  repre- 
sentative values of y are presented in figures 4-7. 

Examination of the profiles suggests that the typical profiles shapes observed 
should be classified into the following groups. We examine first the profiles for 
which the velocity is either always positive or always negative in the section, 
from the wall to the axis, or from the wall to the boundary of the central core, 
when the profiles are not fully developed. (This is the case a t  the start, up to a 
value of Qt which is an increasing function of y. )  I n  group (i), the modulus of 
velocity increases monotonically. (See e.g. figure 5: y = 15.3, f i t  = 4n.) I n  
group (ii), the modulus of velocity reaches a maximum, then decreases. (See 
e.g. figure 6: y = 177, Qt = 3n.) In group (iii), the modulus of velocity reaches 
amaximum, thenaminimum, thenincreases. (8eee.g. figure 6: y = 177, !& = gn.) 
And so on. When the modulus of velocity is reduced to zero a t  a point in the 
section defined by r = rl, the corresponding profile is termed a reverse-$ow 
profile. In  this case, the modulus of velocity reaches a maximum with 

r, < r < R. 

With T < rI ,  the profile shape is similar to the nth previously defined shape. 
The profile is therefore classified into the group n+ 1. (See e.g. figure 5: 

The evolution of the shape of the instantaneous velocity profiles according 
to this classification is summarized in figure 8, corresponding to 0 < at < 3n and 
y* < y < 140. (In aperiodic flow profiles belong to group (i).) We note reverse 
flow profiles from Qt = kn - $, where 0 < $ < in, $ = 0 . 8 5 ~  for y = 15 ,4  ci in 
for y > 38 (the values of Qt corresponding to E = 1 , 2 , 3  are, respectively, Qt,, 
Qt,, Qt,), up to Qt = kn-+e, where 0 < 8 < +n, E 2: in for y E 46. At Qt,, 
Qt,, Qt,, the sign of the velocity gradient at  the wall changes, (aw’/ar’),=, = 0, 
an extremum of the velocity appears near the wall, and the group of the 
profile changes from n to n + 1. Moreover, the modulus of the velocity of 
a fully developed profile reaches an extremum on the axis of the tube. This 
extremum becomes a minimum if it was a maximum, and vice versa; and 
the group of the profile changes from n+ 1 to n a t  a t ,  (n < Qt, < 2n) and 
Qt, (2n < at, < 3n), corresponding to the condition (i32w’/i3r‘2),,=o = 0 (Qt, 
and Qt, are, respectively, defined for 8 < y 6 46 and 8 < y < 140). From figure 8, 
when the f i s t  up motion occurs, the profile belongs to group (i) up to Qt, whatever 
y ;  and, during the first down motion, the profile may belong to group (i) only 
if y < 38, and in that case between Qt, and Qt, only. 

It seems interesting to compare these results with those relative to a flow 
oscillating under a sinusoidal pressure gradient - (1/p) ap/az = C exp (iQt). (C and 
Q are real, the flow being considered a long time after the start-up.) The velocity 
can be expressed in the form, given by Sexl, 

y = 15.3, Qt = T . )  

where 

5 

iC [ Q 
ber q1 + i bei q1 
ber q + i bei q 

w=-- 1 -  

y = R2Q/v, [yr2/R2]9 = ql, yt = (I? 

J,[ - iq$ = ber q1 + i bei ql. 
F L M  70 
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FIGURE 4. Axial instantaneous velocity profiles, y = 2.04 (aperiodic flow). 
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FIGURE 8. Evolution of shape of instantaneous velocity profiles, according to classification 
into groups, for 0 f at f 37r and y* < y < 140. (In aperiodic flow, profiles belong to  
group (i) .) - - -, at,, at, ; __ , at,, at,, at,. 

FIGURE 9. Evolution of shape of instantaneous velocity profiles, according to  classification 
into groups, for Sexl’s expression of velocity, one oscillation 0 < nt < 2n, and 0 < y < 136. 
_ _ _  , nt,, at,; -, at,, at,. 

The evolution of the shape of the instantaneous velocity profiles of this motion, 
according t o  the classification adopted earlier, is summarized in figure 9, during 
one oscillation 0 < Rt < 2n, and for 0 < y < 136. 

For a given value of y, the group of the profile changes from n to n + 1 at 
Rt, and Rt,, corresponding to (aw’/ar’),,=, = 0, and from n + I to n at Rt, and 
Rt,, corresponding to (a2w‘/8r‘2)r,=o = 0. It is easy to show that fit, = +n and 
fit, = $n for beiq = 0, corresponding to y = 25, 89, 193, that Rt, = 7~ and 
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Qt, = 2n for ber q = 0, corresponding to y = 8, 52, 136, and that Qt, 21 f i t ,  and 
Qt3 2~ Qt4 for berq = beiq, corresponding to y = 37, 110. The characteristic 
values of y given in figure 8 are quite in agreement with the corresponding values 
for the oscillating flow given in figure 9. Moreover, the influence of the start-up 
in this classification is noticeable up to a value of Qt which increases with y. 
Let us now study this initial flow. 

3.2. Boundary layer 

It is well known (Batchelor 1967) that, at  start-up, the flow is entirely irrotational. 
Then vorticity is produced at the wall, and diffused away. A boundary layer is 
formed. Adopting a definition of boundary-layer thickness S (e.g. that distance 
from the wall beyond which the modulus of velocity remains within 1 yo of the 
value on the axis), we can distinguish boundary-layer and fully developed 
profiles. 

Since the sign of the velocity gradient at  the wall changes in the vicinity of 
Qt 2: kn-$, the vorticity at the wall is alternately positive and negative. 
It is easy to show that y is related to the ratio of the tube radius to the distance 
vorticity diffuses in one pseudo period. Consequently, at  the start profiles are 
blunt up to Qt,, with Qt, increasing as y increases. At later times Qt > at,, 
profiles are fully developed, but, at  a given Qt, they are very different, depending 
on the value of y. In  particular, for small y (see e.g. figure 5, y = 15.3), the 
velocity varies continuously from the axis to the wall; and, for large y (see 
e.g. figure 6, y = 177), the velocity varies slowly in some central region, then 
falls rapidly to zero. Since 

(i32w’/i?r’2),,=o = 0 for Qt < Qt,, (i32w’/?r’2)r,50 + 0 for Qt > at,, 

it follows that 

Qt, = Qt, for 0 < at, < n, at, = Qt, for n < fit, < 271, 

and so on. a t ,  and Qt, are determined in figures 8 and 9. The size of the central 
core is, for a given value of Qt, an increasing function of y ,  and for a given value 
of y ,  a decreasing function of at. 

The logarithmic representation of the boundary-layer relative thickness as 
a function of y, with Qt as parameter, is given in figure 10. For a given value of 
Qt, the representative curve is formed by two straight lines of different slopes, 
intersecting at  y = 25. The expression for S/R as a function of y and Qt is con- 
sequently different for y < 25 or y > 25. For y < 25, we obtain 

S/R = 5*8~-O.~(  f i t)&. (15) 

This equation can be rewritten in the form 

s = k(vt)J ,  

where k = 5.8y-o1(S2/~,)*. 
It is easy to see that k 2: 4: 

X: = 3.91 for y = 25; k = 4.17 for y = 5. 
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Let us compare this formula with the corresponding one given by Stokes's first 
problem of an instantaneously accelerated flat plate : 

6 = 4(v t )k  (16) 

The excellent agreement between ( 1 5 a )  and (16) can be explained by the fact 
that, for y < 25, the boundary layer develops during the accelerated phase of 
the first up motion. When y > 25, the boundary-layer thickness is proportional 
to the square root of the time only a t  the start-up (0 < QZt < 0.04). 

3.3. Skin friction on the wall 

The mean skin-friction coefficient cf is defined by 

W, is the instantaneous mean velocity in the section, and the subscript on the 
quantity considered designates half the sum of the mean value of the quantity 
between 0 and n-, and of the mean value between n- and 2n. Let us define the 
Revnolds number 

grn is obviously a product of h,/R and a function of y. The curves of the logarith- 
mic representation of C j  as a function of 22% with y as a parameter, plotted in 
figure 11, are straight lines with a - 1 slope. If y > 25, to each value of y corres- 
ponds a straight line, leading to 

Cj = ( 2 . 4 ~ 0 ~ )  BG1. (18a)  

6' = 8.759;;. ( 1 8 b )  

If 8 < y 6 25, whatever the value of y, the straight line remains the same, 
leading to 

(y" < y 6 8 is a transition domain between aperiodic and periodic flows.) 
From these results, it follows that 22, appears as a relevant parameter of the 

flow only for y 6 25. For y > 25, two parameters, 9, and y (or L%', and h,/R) 
are necessary to determine cf. Moreover, we can draw, for y > 25 (figure 11), 
the curves of the logarithmic representation of cf as a function of 9vb with h,/R 
as a parameter. These curves are straight lines with a -0.7 slope. The - 1 
slope straight lines and the -0.7 slope straight lines form a network that 
makes it possible to determine the value of cr corresponding to a chosen value 
of y and of ho/B. Finally, (I8b) agrees with the laminar Poiseuille flow result 

3.4. Damping of oscillatory JEows 

The damping given by (14) is constant during the successive oscillations when 
y < 25; but it decreases a t  the beginning of the motion, then keeps a constant 
value when y > 25. 

c; = 89-1. 
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3.5. Stability criterion 

A necessary condition for instability of two-dimensional steady flows was 
obtained by Rayleigh (1895). An improvement of the condition was subsequently 
given by Hoiland (1953). Batchelor & Gill (1962) established this condition for 
steady axisymmetric flows, and Conrad & Griminale (1 965u, b )  for unsteady 
two-dimensional flows. An attempt is made here to generalize the criterion to 
the present free oscillatory flow, which belongs to the class of unsteady parallel 
axisymmetric flows. 

A three-dimensional disturbance characterized by the pressure p x  and the 
velocity of components ux(r ,  z ,  t ) ,  vX(r ,  z ,  t ) ,  wx(r, z, t )  is superposed on the base 
flow ( p ,  W(r ,  t ) ) ,  according to the smallperturbation method. Attention is restricted 
to axisymmetrie disturbances, as they are simpler to handle theoretically. 
Moreover, the disturbances generated in the experiments seem to  be axisym- 
metric. Let 

ux = u(r, t )  exp (iaz), DX = v( r ,  t )  exp (iaz), wx’ = w(r ,  t )  exp (iaz). 

(a is the wavenumber.) The classical linearized Navier-Stokes equations read 
as follows, if viscosity is neglected: 

a2w‘ i awr 
arf2 r’ a?’ 

W‘[DDx-k2]u’-u‘ -)] = 0, (19) 

The boundary condition is 

t’ > 0, r’ = -t 1, u’ = 0. 

The non-dimensional base flow W‘(r‘,t’) is separable. We assume that1 such is 
also the case for the perturbation velocity components. 

First taking into account the component u’, let 
W 

u’(T‘, t’) = gn(r’)jn(t‘). 

Should this relation be introduced into (lQ), one would obtain equations of the 
form 

n = l  

where 
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The integral [(Lg,) 0, - (&j,) g,] r'dr' = 0 (an overbar denotes a conjugate s,' 
complex quantity) can be written, assuming j ,  real, as 

Thus, either j ,  = 0, or dj,fdt = 0, or (condition (i)) P( W ' )  = 0 somewhere in the 
interval 0 ,< r' ,< 1. It is easy to see that this result remains unchanged with 
j ,  complex. Condition (i) is thus necessary for the existence of amplified distur- 
bancesu'. It can be shown that a further necessary condition is that W'. F (  W')  < 0 
over an appreciable region of the interval 0 < r' < 1. This last is termed condition 
(ii). 

Now taking into account the components w' and v', (21) shows that the 
results obtained for u' also apply to w' and (20) shows that v'(r ', t ' )  cannot be: 
an increasing function of time. Therefore, if 

is reduced to zero and changes of sign (condition (i)) and 

W ' ( ! g - -  I awl -) 
r' ar' 

is negative over an appreciable region of the interval (condition (ii)), then the 
free oscillatory flow can become unstable. These two conditions are simul- 
taneously satisfied at  any Qt when y > 25. A value of 25 of the parameter y is 
therefore the limit below which the flow is always stable, and above which it 
can be unstable. 

With regard to condition (i), it seems worth considering the particular reverse- 
flow profiles with points K defined by 

We note the existence of a point K ,  whatever the value of y, at the beginning 
of the reverse flow on the wall (fit = Qt,, r' = 1). For y < 25, there is no other 
point K.  For y = 25, we note a point K at the end of the reverse flow on the axis 
of the tube. As the value of y increases from 25, K moves from the axis to the 
wall, and occurs earlier and earlier. Thus, for y = 260, the point K corresponds 
to fit = 0 . 9 ~  and to r' = 0.9. 

4. Experimental investigation 
Experiments are conducted in two vertical U-shaped tubes 1 cm and 2 cm 

in diameter and 200 cm long. Mineral oils and glycerin-water mixtures with 
kinematic viscosity 0.0095 < v cm2 s-l < 1.255 are used as test fluids. The 
similarity parameter range investigated is 

and 2-04 < y < 260 2 < h,/R 6 50. 
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4.1. Velocity measurement 

All measurements are made with hot-film straight velocity probes operated 
with a DISA constant-temperature anemometer 55 D 01 at  5 % overheat. 
The probe response and the piezo-quartz sensor response (making it possible to 
calculate the angular frequency) are recorded simultaneously on an oscillograph, 
and with a Polaroid camera. Steady probe calibrations are performed with two 
experimental arrangements. In  the first instance, along the axis of a channel 
filled with the used fluid, a carriage on which the probe has been fitted is 
moved in a parallel direction at  a constant speed. In the second, steady velocities 
are generated by rotating liquid in an open vessel on a turn-table. In  both cases, 
the response of the probes whose sensing element is lowered into the liquid makes 
it possible t o  draw the calibration curves. The behaviour of the probe in an 
unsteady flow is studied (Seed & Wood 1970) with an oscillator, which produces 
a periodic motion along an arc concentric with the rotating fluid. In  the condi- 
tions of the experimental investigation, the errors introduced when using the 
steady calibration curves are less than 5 yo. 

In  each of the experiments carried out, corresponding to a chosen value of y 
and a chosen value of h,/R, the point velocity distribution as time progresses 
is successively recorded at  21 points on the diameter of a given cross-section of 
the U-tube. The instantaneous velocity profiles are derived from these records, 
at  several values of Opt or at. Furthermore, the response of a piezo-quartz 
sensor, which permits calculation of the period, is registered on each photograph. 

4.2. Presentation and discussion of results 

The analysis of the signal resulting from the piezo-quartz sensor response shows 
that, for a given value of y, Q is constant during the successive oscillations of 
the fluid column, and independent of h,/R. Visual examination and the analysis 
of the point velocity distribution records, and of the instantaneous velocity 
profiles, enable us t o  state the following results. 

(i) Depending on y ,  h,/R and r/R,  the velocity wave forms are undisturbed 
(see e.g. figure 12, plate 1) or disturbed over a more or less extended portion of 
the successive oscillations (see e.g. figure 13(c), plate 2, or figure 15(c),  plate 4). 
Observed disturbances should be divided into two types. Those of relatively low 
frequency (termed DL), which have the appearance of a Tollmien-Schlichting 
instability, are present on the records as oscillations around the velocity wave 
form (see e.g. figure 15, plate 4). They represent a transitional condition. Those 
of high frequency (termed DH) are superposed on the DL disturbances. They 
are representative of turbulent flow (figure 13(c), plate 2).  For a chosen experi- 
ment, the flow can be successively laminar, transitional, turbulent and again 
laminar. The duration of each regime is a function of y ,  h,/R and r/R. 

(ii) For a chosen value of y, the instantaneous velocity amplitude is, at a 
chosen r/R and Qt, an increasing function of h,/R. 

(iii) When the flow is laminar, the form of the instantaneous velocity profiles 
depends on y only. 

(iv) In  a chosen experiment, the instantaneous velocity profiles are identical 
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in all cross-sections whose distance from the end of the fluid column is more t,han 
2 em. We have used this result in the theoretical analysis. 

(v) There are several types of flow, depending on the value of y .  First, the 
flow is aperiodic when y d 4. Second, it is oscillatory when y > 4. Also, three 
possible oscillatory regimes can be distinguished. 

(a )  There is a regime, 4 < y < 28, in which the signal is undisturbed whatever 
the value of h,/R. The flow is then laminar (figure 12, plate 1). For a value of y 
the instantaneous experimental velocity profile is unique, whatever the value 
of h,/R, and as seen in figure 5, the agreement between the unique experimental 
profile and the corresponding theoretical profile is excellent. 

( b )  There is a regime, y > 46, in which, based on the value of h,/R, DH distur- 
bances are present during a t  least the whole first down motion of the fluid column, 
showing therefore the characteristics of a turbulent flow (figure 13(c),  plate 2). 
As a matter of fact, there is, for each value of y, a value of h,/R, (ho/R),,, below 
which the flow is laminar. For values of h,/R slightly higher than (h,,/R)cl, a DL 
disturbance is visible close to Qt = #7r. When h,/R increases DL, then DH 
disturbances, whose amplitude and frequency go on increasing, can be seen in 
the flow earlier and earlier before #n, and later and later after #n (figures 13 (a) ,  
( b ) ,  plate 2 ) .  For (ho/R),,, the flow is highly disturbed, and shows the character- 
istics of a turbulent flow during the whole first down motion. When h,/R in- 
creases beyond (ho/R),z, the flow always remains laminar until the beginning 
of the reverse flow, but the number of oscillations during which the flow is 
completely turbulent increases. When the up motion of an oscillation is 
completely turbulent, so is the down motion; and there is an up-down coupling. 
These couplings start with the second oscillation; and, for a given y ,  as ho/R 
increases, they affect more and more oscillations (figure 13(c), plate 2) .  (h,,/R)cl 
and (h,/R),2 depend on y .  On the axis of the tube, this dependence appears to 
be well represented by 

(ho/R)cl = 175y-06, (h,/R)c2 = 450~-"~. (22: 

For a given value of y ,  if h,/R < (ho/R),l, the instantaneous velocity profile is 
unique whatever the value of h,/R. But, if h,/R 2 (h,/R), to each value of h,/R 
there corresponds an instantaneous velocity profile. The experimental profiles 
and the corresponding theoretical profile are qualitatively similar during the 
first up motion. On the other hand, from the beginning of the first down motion, 
the experimental and corresponding theoretical profiles are qualitatively similar 
only if the flow is not turbulent. Figure 6 (y = 177) shows typical experimental 
turbulent profiles, with a central flat part. Such is the case with h,/R = 25 and 

(c) There is an intermediate regime 28 < y 6 46, in which, when h,/R in- 
creases from (ho/R)cl, disturbances are observed earlier and earlier in the flow, 
before Qt = @r, up to Qt = f i t2.  But there is never any disturbance in the de- 
celerated phase of the first down motion (figure 15, plate 4). 

The successive up motions are laminar up t o  Qt,, corresponding to the 
beginning of the reverse flow; and a t  Qt, the velocity wave forms are disturbed, 
whatever the value of r/R, if ho/R is large enough. Furthermore, there is never 

Qt = +T. 
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FIGURE 16. Boundary-layer relative thickness SIR as a function of at. 

_- , theory ( y  = 46.9 or 177). Experiment, h,/R: 0 ,  4;  x ,  25. 

any DH disturbance in velocity wave forms. As shown in figure 7, the 
experimental profile corresponding to y = 42, h,/R = 4 is in good agreement 
with the theoretical. Finally, in aperiodic flow, the flow is laminar, and the 
results concerning the velocity profiles are the same as in the first regime 
(figure 4). 

As regards the boundary layer, we note in figure 16 that the curves representing 
the evolution as time progresses of the experimental boundary-layer relative 
thickness 6/R are quite in agreement with the corresponding theoretical curves 
given by (15), when the flow is laminar. When the flow is turbulent, the experi- 
mental points deviate further from the corresponding theoretical curve. This is 
the case a t  y = 177 and h,/R = 25 when Qt N @r. The experimental results are 
therefore quite in agreement with the corresponding computer solutions when 
the flow considered is laminar. The disturbances observed in the experiments 
may now be examined in somewhat more detail. 

4.3. Disturbance studies 

Let us first consider DL disturbances. The results of the visual examination 
of the velocity records are highly suggestive of the fact that the DL disturbances 
are generated in the boundary layer during the reverse flow, then transmitted 
to the inviscid core. Also they suggest that this happens for a given value of y 
(or h,/R) much more quickly than h,/R (or y )  increases. On the other hand, the 
amplitudes of these disturbances decrease a t  the end of the boundary layer. 

I n  fact, whatever the value of y and h,/R, there is never any disturbance 
during the first up motion before Qt2, corresponding to the beginning of the 
reverse flow. Moreover, in the first regime, for which reverse flow occurs when 
velocity profiles are fully developed (at, > Qt,), the flow is not disturbed. In  
the intermediate regime, considering e.g. y = 42, h,/R = 50 (figure 15, plate 4), 
at  Qt, N fn where 6/R e 1, the flow is disturbed in the whole section, and DL 
disturbances of decreasing amplitudes are visible up to  $n close to the wall, 
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and +r on the axis. In  the second regime, considering e.g. y = 260, h,/R = 25 
(figure 14, plate 3) ,  at atz N Qn where SIR si 0.35, the flow is disturbed only 
close to the wall, the whole section is disturbed at  Qt N tn, and disturbances 
are visible up to Qt = 577 (Qt, = 3n) .  

The points K ,  

given by the stability criterion established in $3.5, could be considered as the 
origin of DL disturbances. So DL disturbances should be generated in the second 
regime at  Qt, on the wall and at  Qt (Qt,  < Qt < n for the first oscillation) in the 
boundary layer, and in the intermediate regime at  Qt, on the wall only. (In 
the latter case, the second point K is not in the boundary layer.) 

Finally, in an experimental study of the velocity distribution and transition 
to turbulence in the aorta, Nerem, Seed & Wood (1 972) suggest that the boundary 
layer plays a dominant role in the generation of the disturbances observed in 
their experiments. Furthermore, disturbances appear immediately after peak 
systole (i.e. at  the beginning of the reverse flow). As regards the DH disturbances, 
their generation seems to occur in the central core. In  fact, for each value of y ,  
there is a value of h,/R below which no DH disturbance ever occurs. For a value 
of h,/R slightly higher, DH disturbances appear on the axis of the tube and near 
Qt = $n, corresponding to the peak velocity. Then the lifetime of these distur- 
bances, and the radius of the core they affect are increasing functions of h,/R. 
Although there is no proof, another possible explanation of DH disturbances 
during the down motions is the instability of the free surface. As regards the 
characteristic parameters of the laminar-turbulent transition, taking 

9? = W,,, R/v 

(W,,, is the maximum velocity as time progresses), we can define, using (22) ,  a 
critical Reynolds number 

BCl = 175y04Wmax/(~pho). (23)  

This is a function of just the parameter y. Consequently, the Reynolds number, 
alone, cannot determine the structure of the flow. Two parameters chosen from 
the group LJ?, y ,  h,/R are necessary to do so. It seems interesting to compare the 
critical Reynolds number (23)  with those given in Nerem et al. : 

gc1 = 150(R2Q/v)0'5 (ascending aorta), 

9ZCl = 250(R2Q/v)05 (descending aorta). (24)  

For the values of the frequencies of oscillations considered by these authors, 
our analysis gives Wmax/(upho) N 1.05, q,/Q N 1.  We obtain, for (23) ,  

gCl = 190(R2Q/~)0'4. 

This result is in good agreement with (24). 
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4.4. Visualizations of theJlow 

Flow visualizations were made, using a working fluid with particular optical 
properties: e.g. a solution of carbon bisulphide, acetone and peanut oil, which 
made it possible to see disturbances inside the fluid column. With this solution, 
by the quantity determination of the constituents, it was possible to obtain 
various kinematic viscosities, then various values of y. Films and photographs 
were taken in several parts of the fluid column, during the motion. Analysis of 
these records shows that, for a working section distant from the free surface, 
vortices are present only if 

y > 25 and ho/R > (ho/R),3, 

(ho/R),3 being a decreasing function of y, such that 

(ho/R)c3 < ( h O P ) C I .  
For (hOlR), < < @ o m c 1 ,  

(ha/@,, < J h O P  < ( h o P ) c , ,  

ho/B ’ (ho /m!Z  

vortices are produced in the fluid column during the first down motion, and 
are damped as time progresses. For 

these vortices generate a more or less disturbed flow, during the first down motion 
when the velocity is the highest. For 

the flow is turbulent during the whole first down motion, but always laminar 
during the greater part of the first up motion (figure 17, plate 5). Thus, the re- 
sults of examination of the velocity waves are confirmed by these visualizations. 

Now, if we consider the flow in the vicinity of the free surface, whatever the 
value of y, for any value of ho/R higher than (ho/R)l, y(ho/R)l = 260, i.e. 

92 = W,,, R/v 2: 260, 
a ring vortex (figure 18, plate 6) is formed in the early stage of the first down 
motion, develops to fill the whole cross-section of the tube, then destroys itself. 

It is worth noting that Hughes & Gerrard (1971) showed (in an experimental 
study of the flow relative to a piston and a free surface started from rest) that a 
ring vortex is produced just below the surface when the Reynolds number is 
higher than 225. In  a theoretical study, Gerrard (1971) had shown that the ring 
vortex is present in computed flow only if the flow is at  each time disturbed 
randomly. As far as our study is concerned, on account of the impulsive change 
of the motion, the free surface is disturbed for Qt 2: 7 ~ .  Furthermore, the equiva- 
lence, between the process of an impulsive change of the sense and an impulsive 
start of the motion, leads us to think that the existence of the ring vortex is 
the result (Telionis & Tsahalis 1974) of the superposition of the inviscid flow 
generated by the impulsive change on the existing viscous fluid, and that our 
study is similar to Gerrard’s. 

Finally, the free surface is unstable when acceleration is directed towards 
the liquid (Taylor 1950; Benjamin & Ursell 1954). Hence, for the present study, 
in a down motion the free surface is unstable. 
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5. Conclusion 
Analysis of theoretical and experimental results on oscillatory free motion 

shows that this flow is not governed by just one similarity parameter, as is the 
case in steady flows, but by two, chosen from the group y, h,/R, yh,/R (where 
yh,/R is a Reynolds number). We shall add that we have the feeling that this 
result can be extended to some other unsteady flows. More precisely, and though 
the free oscillatory flow studied here differs markedly from blood flow in arteries, 
we think we are justified in stating that our results will provide further insight 
into arterial blood flow. 
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FIGURE 12. Point velocity records, y = 15.3 (first regime), r/R = 0. 
h,/R: (a) 4; (a) 10; (c) 25; ( d )  50. 
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FIGURE 13. Point velocity records, y = 177 (second regime), r /R  = 0. 
h,/R: (a )  8; (b )  15; ( c )  25. 
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FICJTJRE 15. Point velocity records, y = 42 (iiiteriixdiato rcgiinc.). 
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